MakeItFrom.com
Menu (ESC)

C66700 Brass vs. EN 1.6553 Steel

C66700 brass belongs to the copper alloys classification, while EN 1.6553 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C66700 brass and the bottom bar is EN 1.6553 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.0 to 58
19 to 21
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 41
73
Tensile Strength: Ultimate (UTS), MPa 340 to 690
710 to 800
Tensile Strength: Yield (Proof), MPa 100 to 640
470 to 670

Thermal Properties

Latent Heat of Fusion, J/g 180
250
Maximum Temperature: Mechanical, °C 140
420
Melting Completion (Liquidus), °C 1090
1460
Melting Onset (Solidus), °C 1050
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 97
39
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 19
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 25
2.7
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.6
Embodied Energy, MJ/kg 45
21
Embodied Water, L/kg 320
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 150
130 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 1900
600 to 1190
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 11 to 23
25 to 28
Strength to Weight: Bending, points 13 to 21
23 to 24
Thermal Diffusivity, mm2/s 30
10
Thermal Shock Resistance, points 11 to 23
21 to 23

Alloy Composition

Carbon (C), % 0
0.23 to 0.28
Chromium (Cr), % 0
0.4 to 0.8
Copper (Cu), % 68.5 to 71.5
0 to 0.3
Iron (Fe), % 0 to 0.1
95.6 to 98.2
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0.8 to 1.5
0.6 to 1.0
Molybdenum (Mo), % 0
0.15 to 0.3
Nickel (Ni), % 0
0.4 to 0.8
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.8
Sulfur (S), % 0
0 to 0.025
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 26.3 to 30.7
0
Residuals, % 0 to 0.5
0

Comparable Variants