MakeItFrom.com
Menu (ESC)

C66700 Brass vs. EN 1.7729 Steel

C66700 brass belongs to the copper alloys classification, while EN 1.7729 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C66700 brass and the bottom bar is EN 1.7729 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.0 to 58
17
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 41
73
Shear Strength, MPa 250 to 530
560
Tensile Strength: Ultimate (UTS), MPa 340 to 690
910
Tensile Strength: Yield (Proof), MPa 100 to 640
750

Thermal Properties

Latent Heat of Fusion, J/g 180
250
Maximum Temperature: Mechanical, °C 140
430
Melting Completion (Liquidus), °C 1090
1470
Melting Onset (Solidus), °C 1050
1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 97
40
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 19
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 25
3.8
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.7
3.3
Embodied Energy, MJ/kg 45
49
Embodied Water, L/kg 320
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 150
150
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 1900
1500
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 11 to 23
32
Strength to Weight: Bending, points 13 to 21
27
Thermal Diffusivity, mm2/s 30
11
Thermal Shock Resistance, points 11 to 23
27

Alloy Composition

Aluminum (Al), % 0
0.015 to 0.080
Arsenic (As), % 0
0 to 0.020
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0
0.17 to 0.23
Chromium (Cr), % 0
0.9 to 1.2
Copper (Cu), % 68.5 to 71.5
0 to 0.2
Iron (Fe), % 0 to 0.1
94.8 to 97
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0.8 to 1.5
0.35 to 0.75
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0
0 to 0.020
Titanium (Ti), % 0
0.070 to 0.15
Vanadium (V), % 0
0.6 to 0.8
Zinc (Zn), % 26.3 to 30.7
0
Residuals, % 0 to 0.5
0