MakeItFrom.com
Menu (ESC)

C66700 Brass vs. EN 2.4851 Nickel

C66700 brass belongs to the copper alloys classification, while EN 2.4851 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C66700 brass and the bottom bar is EN 2.4851 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.0 to 58
34
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 41
76
Shear Strength, MPa 250 to 530
430
Tensile Strength: Ultimate (UTS), MPa 340 to 690
650
Tensile Strength: Yield (Proof), MPa 100 to 640
230

Thermal Properties

Latent Heat of Fusion, J/g 180
320
Maximum Temperature: Mechanical, °C 140
1200
Melting Completion (Liquidus), °C 1090
1360
Melting Onset (Solidus), °C 1050
1310
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 97
11
Thermal Expansion, µm/m-K 20
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 19
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 25
49
Density, g/cm3 8.2
8.2
Embodied Carbon, kg CO2/kg material 2.7
8.1
Embodied Energy, MJ/kg 45
120
Embodied Water, L/kg 320
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 150
170
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 1900
130
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 11 to 23
22
Strength to Weight: Bending, points 13 to 21
20
Thermal Diffusivity, mm2/s 30
2.9
Thermal Shock Resistance, points 11 to 23
17

Alloy Composition

Aluminum (Al), % 0
1.0 to 1.7
Boron (B), % 0
0 to 0.0060
Carbon (C), % 0
0.030 to 0.1
Chromium (Cr), % 0
21 to 25
Copper (Cu), % 68.5 to 71.5
0 to 0.5
Iron (Fe), % 0 to 0.1
7.7 to 18
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0.8 to 1.5
0 to 1.0
Nickel (Ni), % 0
58 to 63
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0 to 0.5
Zinc (Zn), % 26.3 to 30.7
0
Residuals, % 0 to 0.5
0