MakeItFrom.com
Menu (ESC)

C66700 Brass vs. CC331G Bronze

Both C66700 brass and CC331G bronze are copper alloys. They have 71% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C66700 brass and the bottom bar is CC331G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 2.0 to 58
20
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 41
43
Tensile Strength: Ultimate (UTS), MPa 340 to 690
620
Tensile Strength: Yield (Proof), MPa 100 to 640
240

Thermal Properties

Latent Heat of Fusion, J/g 180
230
Maximum Temperature: Mechanical, °C 140
220
Melting Completion (Liquidus), °C 1090
1060
Melting Onset (Solidus), °C 1050
1000
Specific Heat Capacity, J/kg-K 390
440
Thermal Conductivity, W/m-K 97
61
Thermal Expansion, µm/m-K 20
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
13
Electrical Conductivity: Equal Weight (Specific), % IACS 19
14

Otherwise Unclassified Properties

Base Metal Price, % relative 25
28
Density, g/cm3 8.2
8.3
Embodied Carbon, kg CO2/kg material 2.7
3.2
Embodied Energy, MJ/kg 45
53
Embodied Water, L/kg 320
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 150
97
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 1900
250
Stiffness to Weight: Axial, points 7.3
7.6
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 11 to 23
21
Strength to Weight: Bending, points 13 to 21
19
Thermal Diffusivity, mm2/s 30
17
Thermal Shock Resistance, points 11 to 23
22

Alloy Composition

Aluminum (Al), % 0
8.5 to 10.5
Copper (Cu), % 68.5 to 71.5
83 to 86.5
Iron (Fe), % 0 to 0.1
1.5 to 3.5
Lead (Pb), % 0 to 0.070
0 to 0.1
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0.8 to 1.5
0 to 1.0
Nickel (Ni), % 0
0 to 1.5
Silicon (Si), % 0
0 to 0.2
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 26.3 to 30.7
0 to 0.5
Residuals, % 0 to 0.5
0