MakeItFrom.com
Menu (ESC)

C66700 Brass vs. SAE-AISI 5160 Steel

C66700 brass belongs to the copper alloys classification, while SAE-AISI 5160 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C66700 brass and the bottom bar is SAE-AISI 5160 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.0 to 58
12 to 18
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 41
73
Shear Strength, MPa 250 to 530
390 to 700
Tensile Strength: Ultimate (UTS), MPa 340 to 690
660 to 1150
Tensile Strength: Yield (Proof), MPa 100 to 640
280 to 1010

Thermal Properties

Latent Heat of Fusion, J/g 180
250
Maximum Temperature: Mechanical, °C 140
420
Melting Completion (Liquidus), °C 1090
1450
Melting Onset (Solidus), °C 1050
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 97
43
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 19
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 25
2.1
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 45
19
Embodied Water, L/kg 320
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 150
73 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 1900
200 to 2700
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 11 to 23
23 to 41
Strength to Weight: Bending, points 13 to 21
22 to 31
Thermal Diffusivity, mm2/s 30
12
Thermal Shock Resistance, points 11 to 23
19 to 34

Alloy Composition

Carbon (C), % 0
0.56 to 0.61
Chromium (Cr), % 0
0.7 to 0.9
Copper (Cu), % 68.5 to 71.5
0
Iron (Fe), % 0 to 0.1
97.1 to 97.8
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0.8 to 1.5
0.75 to 1.0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Zinc (Zn), % 26.3 to 30.7
0
Residuals, % 0 to 0.5
0