MakeItFrom.com
Menu (ESC)

C66700 Brass vs. N08367 Stainless Steel

C66700 brass belongs to the copper alloys classification, while N08367 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C66700 brass and the bottom bar is N08367 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 2.0 to 58
34
Poisson's Ratio 0.31
0.28
Rockwell B Hardness 57 to 93
88
Shear Modulus, GPa 41
80
Shear Strength, MPa 250 to 530
490
Tensile Strength: Ultimate (UTS), MPa 340 to 690
740
Tensile Strength: Yield (Proof), MPa 100 to 640
350

Thermal Properties

Latent Heat of Fusion, J/g 180
310
Maximum Temperature: Mechanical, °C 140
1100
Melting Completion (Liquidus), °C 1090
1460
Melting Onset (Solidus), °C 1050
1410
Specific Heat Capacity, J/kg-K 390
460
Thermal Conductivity, W/m-K 97
12
Thermal Expansion, µm/m-K 20
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 19
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 25
33
Density, g/cm3 8.2
8.1
Embodied Carbon, kg CO2/kg material 2.7
6.2
Embodied Energy, MJ/kg 45
84
Embodied Water, L/kg 320
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 150
210
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 1900
290
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 11 to 23
25
Strength to Weight: Bending, points 13 to 21
22
Thermal Diffusivity, mm2/s 30
3.2
Thermal Shock Resistance, points 11 to 23
17

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20 to 22
Copper (Cu), % 68.5 to 71.5
0 to 0.75
Iron (Fe), % 0 to 0.1
41.4 to 50.3
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0.8 to 1.5
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0
23.5 to 25.5
Nitrogen (N), % 0
0.18 to 0.25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 26.3 to 30.7
0
Residuals, % 0 to 0.5
0