MakeItFrom.com
Menu (ESC)

C66700 Brass vs. S20432 Stainless Steel

C66700 brass belongs to the copper alloys classification, while S20432 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C66700 brass and the bottom bar is S20432 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.0 to 58
45
Poisson's Ratio 0.31
0.28
Rockwell B Hardness 57 to 93
81
Shear Modulus, GPa 41
76
Shear Strength, MPa 250 to 530
400
Tensile Strength: Ultimate (UTS), MPa 340 to 690
580
Tensile Strength: Yield (Proof), MPa 100 to 640
230

Thermal Properties

Latent Heat of Fusion, J/g 180
280
Maximum Temperature: Mechanical, °C 140
900
Melting Completion (Liquidus), °C 1090
1410
Melting Onset (Solidus), °C 1050
1370
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 97
15
Thermal Expansion, µm/m-K 20
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 19
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 25
13
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 45
38
Embodied Water, L/kg 320
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 150
210
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 1900
140
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11 to 23
21
Strength to Weight: Bending, points 13 to 21
20
Thermal Diffusivity, mm2/s 30
4.0
Thermal Shock Resistance, points 11 to 23
13

Alloy Composition

Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
17 to 18
Copper (Cu), % 68.5 to 71.5
2.0 to 3.0
Iron (Fe), % 0 to 0.1
66.7 to 74
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0.8 to 1.5
3.0 to 5.0
Nickel (Ni), % 0
4.0 to 6.0
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 26.3 to 30.7
0
Residuals, % 0 to 0.5
0