MakeItFrom.com
Menu (ESC)

C66700 Brass vs. S30415 Stainless Steel

C66700 brass belongs to the copper alloys classification, while S30415 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C66700 brass and the bottom bar is S30415 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.0 to 58
45
Poisson's Ratio 0.31
0.28
Rockwell B Hardness 57 to 93
84
Shear Modulus, GPa 41
77
Shear Strength, MPa 250 to 530
470
Tensile Strength: Ultimate (UTS), MPa 340 to 690
670
Tensile Strength: Yield (Proof), MPa 100 to 640
330

Thermal Properties

Latent Heat of Fusion, J/g 180
300
Maximum Temperature: Mechanical, °C 140
940
Melting Completion (Liquidus), °C 1090
1410
Melting Onset (Solidus), °C 1050
1370
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 97
21
Thermal Expansion, µm/m-K 20
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 19
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 25
15
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 2.7
3.1
Embodied Energy, MJ/kg 45
43
Embodied Water, L/kg 320
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 150
250
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 1900
280
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11 to 23
24
Strength to Weight: Bending, points 13 to 21
22
Thermal Diffusivity, mm2/s 30
5.6
Thermal Shock Resistance, points 11 to 23
15

Alloy Composition

Carbon (C), % 0
0.040 to 0.060
Cerium (Ce), % 0
0.030 to 0.080
Chromium (Cr), % 0
18 to 19
Copper (Cu), % 68.5 to 71.5
0
Iron (Fe), % 0 to 0.1
67.8 to 71.8
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0.8 to 1.5
0 to 0.8
Nickel (Ni), % 0
9.0 to 10
Nitrogen (N), % 0
0.12 to 0.18
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
1.0 to 2.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 26.3 to 30.7
0
Residuals, % 0 to 0.5
0