MakeItFrom.com
Menu (ESC)

C66900 Brass vs. AISI 301L Stainless Steel

C66900 brass belongs to the copper alloys classification, while AISI 301L stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C66900 brass and the bottom bar is AISI 301L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.1 to 26
22 to 50
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 45
77
Shear Strength, MPa 290 to 440
440 to 660
Tensile Strength: Ultimate (UTS), MPa 460 to 770
620 to 1040
Tensile Strength: Yield (Proof), MPa 330 to 760
250 to 790

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Maximum Temperature: Mechanical, °C 150
890
Melting Completion (Liquidus), °C 860
1430
Melting Onset (Solidus), °C 850
1390
Specific Heat Capacity, J/kg-K 400
480
Thermal Expansion, µm/m-K 20
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 3.8
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 23
13
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 46
39
Embodied Water, L/kg 310
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.6 to 200
210 to 300
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 2450
160 to 1580
Stiffness to Weight: Axial, points 8.1
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 15 to 26
22 to 37
Strength to Weight: Bending, points 16 to 23
21 to 29
Thermal Shock Resistance, points 14 to 23
14 to 24

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 62.5 to 64.5
0
Iron (Fe), % 0 to 0.25
70.7 to 78
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 11.5 to 12.5
0 to 2.0
Nickel (Ni), % 0
6.0 to 8.0
Nitrogen (N), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 22.5 to 26
0
Residuals, % 0 to 0.2
0