MakeItFrom.com
Menu (ESC)

C66900 Brass vs. EN 1.4424 Stainless Steel

C66900 brass belongs to the copper alloys classification, while EN 1.4424 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C66900 brass and the bottom bar is EN 1.4424 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.1 to 26
28
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 45
78
Shear Strength, MPa 290 to 440
520
Tensile Strength: Ultimate (UTS), MPa 460 to 770
800
Tensile Strength: Yield (Proof), MPa 330 to 760
480 to 500

Thermal Properties

Latent Heat of Fusion, J/g 190
310
Maximum Temperature: Mechanical, °C 150
960
Melting Completion (Liquidus), °C 860
1430
Melting Onset (Solidus), °C 850
1390
Specific Heat Capacity, J/kg-K 400
480
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.8
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 23
15
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 2.8
3.4
Embodied Energy, MJ/kg 46
46
Embodied Water, L/kg 310
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.6 to 200
190 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 2450
580 to 640
Stiffness to Weight: Axial, points 8.1
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 15 to 26
29
Strength to Weight: Bending, points 16 to 23
25
Thermal Shock Resistance, points 14 to 23
23

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
18 to 19
Copper (Cu), % 62.5 to 64.5
0
Iron (Fe), % 0 to 0.25
68.6 to 72.4
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 11.5 to 12.5
1.2 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.0
Nickel (Ni), % 0
4.5 to 5.2
Nitrogen (N), % 0
0.050 to 0.1
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
1.4 to 2.0
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 22.5 to 26
0
Residuals, % 0 to 0.2
0