MakeItFrom.com
Menu (ESC)

C66900 Brass vs. G-CoCr28 Cobalt

C66900 brass belongs to the copper alloys classification, while G-CoCr28 cobalt belongs to the cobalt alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C66900 brass and the bottom bar is G-CoCr28 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 1.1 to 26
6.7
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 45
83
Tensile Strength: Ultimate (UTS), MPa 460 to 770
560
Tensile Strength: Yield (Proof), MPa 330 to 760
260

Thermal Properties

Latent Heat of Fusion, J/g 190
320
Maximum Temperature: Mechanical, °C 150
1200
Melting Completion (Liquidus), °C 860
1330
Melting Onset (Solidus), °C 850
1270
Specific Heat Capacity, J/kg-K 400
470
Thermal Expansion, µm/m-K 20
14

Otherwise Unclassified Properties

Base Metal Price, % relative 23
100
Density, g/cm3 8.2
8.1
Embodied Carbon, kg CO2/kg material 2.8
6.2
Embodied Energy, MJ/kg 46
84
Embodied Water, L/kg 310
440

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.6 to 200
31
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 2450
160
Stiffness to Weight: Axial, points 8.1
15
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 15 to 26
19
Strength to Weight: Bending, points 16 to 23
19
Thermal Shock Resistance, points 14 to 23
14

Alloy Composition

Carbon (C), % 0
0.050 to 0.25
Chromium (Cr), % 0
27 to 30
Cobalt (Co), % 0
48 to 52
Copper (Cu), % 62.5 to 64.5
0
Iron (Fe), % 0 to 0.25
9.7 to 24.5
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 11.5 to 12.5
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 4.0
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0.5 to 1.5
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 22.5 to 26
0
Residuals, % 0 to 0.2
0