MakeItFrom.com
Menu (ESC)

C66900 Brass vs. Nickel 333

C66900 brass belongs to the copper alloys classification, while nickel 333 belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C66900 brass and the bottom bar is nickel 333.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 1.1 to 26
34
Poisson's Ratio 0.32
0.28
Rockwell B Hardness 65 to 100
85
Shear Modulus, GPa 45
81
Shear Strength, MPa 290 to 440
420
Tensile Strength: Ultimate (UTS), MPa 460 to 770
630
Tensile Strength: Yield (Proof), MPa 330 to 760
270

Thermal Properties

Latent Heat of Fusion, J/g 190
320
Maximum Temperature: Mechanical, °C 150
1010
Melting Completion (Liquidus), °C 860
1460
Melting Onset (Solidus), °C 850
1410
Specific Heat Capacity, J/kg-K 400
450
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 3.8
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 23
55
Density, g/cm3 8.2
8.5
Embodied Carbon, kg CO2/kg material 2.8
8.5
Embodied Energy, MJ/kg 46
120
Embodied Water, L/kg 310
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.6 to 200
170
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 2450
180
Stiffness to Weight: Axial, points 8.1
14
Stiffness to Weight: Bending, points 20
23
Strength to Weight: Axial, points 15 to 26
21
Strength to Weight: Bending, points 16 to 23
19
Thermal Shock Resistance, points 14 to 23
16

Alloy Composition

Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
24 to 27
Cobalt (Co), % 0
2.5 to 4.0
Copper (Cu), % 62.5 to 64.5
0
Iron (Fe), % 0 to 0.25
9.3 to 24.5
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 11.5 to 12.5
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 0
44 to 48
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
2.5 to 4.0
Zinc (Zn), % 22.5 to 26
0
Residuals, % 0 to 0.2
0