MakeItFrom.com
Menu (ESC)

C67000 Bronze vs. EN 2.4816 Nickel

C67000 bronze belongs to the copper alloys classification, while EN 2.4816 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C67000 bronze and the bottom bar is EN 2.4816 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 5.6 to 11
34
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 42
74
Shear Strength, MPa 390 to 510
470
Tensile Strength: Ultimate (UTS), MPa 660 to 880
700
Tensile Strength: Yield (Proof), MPa 350 to 540
270

Thermal Properties

Latent Heat of Fusion, J/g 190
310
Maximum Temperature: Mechanical, °C 160
1150
Melting Completion (Liquidus), °C 900
1370
Melting Onset (Solidus), °C 850
1320
Specific Heat Capacity, J/kg-K 410
460
Thermal Conductivity, W/m-K 99
15
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 25
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 23
55
Density, g/cm3 7.9
8.5
Embodied Carbon, kg CO2/kg material 2.9
9.0
Embodied Energy, MJ/kg 49
130
Embodied Water, L/kg 350
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 43 to 62
190
Resilience: Unit (Modulus of Resilience), kJ/m3 560 to 1290
190
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 20
23
Strength to Weight: Axial, points 23 to 31
23
Strength to Weight: Bending, points 21 to 26
21
Thermal Diffusivity, mm2/s 30
3.8
Thermal Shock Resistance, points 21 to 29
20

Alloy Composition

Aluminum (Al), % 3.0 to 6.0
0 to 0.3
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0
14 to 17
Copper (Cu), % 63 to 68
0 to 0.5
Iron (Fe), % 2.0 to 4.0
6.0 to 10
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
0 to 1.0
Nickel (Ni), % 0
72 to 80
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.5
0
Titanium (Ti), % 0
0 to 0.3
Zinc (Zn), % 21.8 to 32.5
0
Residuals, % 0 to 0.5
0