MakeItFrom.com
Menu (ESC)

C67300 Bronze vs. AISI 414 Stainless Steel

C67300 bronze belongs to the copper alloys classification, while AISI 414 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C67300 bronze and the bottom bar is AISI 414 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 12
17
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 41
76
Shear Strength, MPa 300
550 to 590
Tensile Strength: Ultimate (UTS), MPa 500
900 to 960
Tensile Strength: Yield (Proof), MPa 340
700 to 790

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Maximum Temperature: Mechanical, °C 130
750
Melting Completion (Liquidus), °C 870
1440
Melting Onset (Solidus), °C 830
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 95
25
Thermal Expansion, µm/m-K 20
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 25
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 23
8.0
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.1
Embodied Energy, MJ/kg 46
29
Embodied Water, L/kg 320
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55
140 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 550
1260 to 1590
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 17
32 to 34
Strength to Weight: Bending, points 17
27 to 28
Thermal Diffusivity, mm2/s 30
6.7
Thermal Shock Resistance, points 16
33 to 35

Alloy Composition

Aluminum (Al), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
11.5 to 13.5
Copper (Cu), % 58 to 63
0
Iron (Fe), % 0 to 0.5
81.8 to 87.3
Lead (Pb), % 0.4 to 3.0
0
Manganese (Mn), % 2.0 to 3.5
0 to 1.0
Nickel (Ni), % 0 to 0.25
1.3 to 2.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.5 to 1.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 27.2 to 39.1
0
Residuals, % 0 to 0.5
0