MakeItFrom.com
Menu (ESC)

C67300 Bronze vs. EN 1.4313 Stainless Steel

C67300 bronze belongs to the copper alloys classification, while EN 1.4313 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C67300 bronze and the bottom bar is EN 1.4313 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 12
12 to 17
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 41
76
Shear Strength, MPa 300
460 to 600
Tensile Strength: Ultimate (UTS), MPa 500
750 to 1000
Tensile Strength: Yield (Proof), MPa 340
580 to 910

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Maximum Temperature: Mechanical, °C 130
780
Melting Completion (Liquidus), °C 870
1450
Melting Onset (Solidus), °C 830
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 95
25
Thermal Expansion, µm/m-K 20
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 25
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 23
10
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.4
Embodied Energy, MJ/kg 46
34
Embodied Water, L/kg 320
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55
110 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 550
870 to 2100
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 17
27 to 36
Strength to Weight: Bending, points 17
23 to 28
Thermal Diffusivity, mm2/s 30
6.7
Thermal Shock Resistance, points 16
27 to 36

Alloy Composition

Aluminum (Al), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 58 to 63
0
Iron (Fe), % 0 to 0.5
78.5 to 84.2
Lead (Pb), % 0.4 to 3.0
0
Manganese (Mn), % 2.0 to 3.5
0 to 1.5
Molybdenum (Mo), % 0
0.3 to 0.7
Nickel (Ni), % 0 to 0.25
3.5 to 4.5
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.5 to 1.5
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 27.2 to 39.1
0
Residuals, % 0 to 0.5
0