MakeItFrom.com
Menu (ESC)

C67300 Bronze vs. S40910 Stainless Steel

C67300 bronze belongs to the copper alloys classification, while S40910 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C67300 bronze and the bottom bar is S40910 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 12
23
Poisson's Ratio 0.31
0.28
Rockwell B Hardness 91
76
Shear Modulus, GPa 41
75
Shear Strength, MPa 300
270
Tensile Strength: Ultimate (UTS), MPa 500
430
Tensile Strength: Yield (Proof), MPa 340
190

Thermal Properties

Latent Heat of Fusion, J/g 190
270
Maximum Temperature: Mechanical, °C 130
710
Melting Completion (Liquidus), °C 870
1450
Melting Onset (Solidus), °C 830
1410
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 95
26
Thermal Expansion, µm/m-K 20
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 25
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 23
7.0
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.0
Embodied Energy, MJ/kg 46
28
Embodied Water, L/kg 320
94

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55
80
Resilience: Unit (Modulus of Resilience), kJ/m3 550
94
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 17
16
Strength to Weight: Bending, points 17
16
Thermal Diffusivity, mm2/s 30
6.9
Thermal Shock Resistance, points 16
16

Alloy Composition

Aluminum (Al), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
10.5 to 11.7
Copper (Cu), % 58 to 63
0
Iron (Fe), % 0 to 0.5
85 to 89.5
Lead (Pb), % 0.4 to 3.0
0
Manganese (Mn), % 2.0 to 3.5
0 to 1.0
Nickel (Ni), % 0 to 0.25
0 to 0.5
Niobium (Nb), % 0
0 to 0.17
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.5 to 1.5
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.3
0
Titanium (Ti), % 0
0 to 0.5
Zinc (Zn), % 27.2 to 39.1
0
Residuals, % 0 to 0.5
0