MakeItFrom.com
Menu (ESC)

C67300 Bronze vs. S44537 Stainless Steel

C67300 bronze belongs to the copper alloys classification, while S44537 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C67300 bronze and the bottom bar is S44537 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 12
21
Poisson's Ratio 0.31
0.27
Rockwell B Hardness 91
80
Shear Modulus, GPa 41
79
Shear Strength, MPa 300
320
Tensile Strength: Ultimate (UTS), MPa 500
510
Tensile Strength: Yield (Proof), MPa 340
360

Thermal Properties

Latent Heat of Fusion, J/g 190
290
Maximum Temperature: Mechanical, °C 130
1000
Melting Completion (Liquidus), °C 870
1480
Melting Onset (Solidus), °C 830
1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 95
21
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 25
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 23
19
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 2.7
3.4
Embodied Energy, MJ/kg 46
50
Embodied Water, L/kg 320
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55
95
Resilience: Unit (Modulus of Resilience), kJ/m3 550
320
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 17
18
Strength to Weight: Bending, points 17
18
Thermal Diffusivity, mm2/s 30
5.6
Thermal Shock Resistance, points 16
17

Alloy Composition

Aluminum (Al), % 0 to 0.25
0 to 0.1
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20 to 24
Copper (Cu), % 58 to 63
0 to 0.5
Iron (Fe), % 0 to 0.5
69 to 78.6
Lanthanum (La), % 0
0.040 to 0.2
Lead (Pb), % 0.4 to 3.0
0
Manganese (Mn), % 2.0 to 3.5
0 to 0.8
Nickel (Ni), % 0 to 0.25
0 to 0.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0.5 to 1.5
0.1 to 0.6
Sulfur (S), % 0
0 to 0.0060
Tin (Sn), % 0 to 0.3
0
Titanium (Ti), % 0
0.020 to 0.2
Tungsten (W), % 0
1.0 to 3.0
Zinc (Zn), % 27.2 to 39.1
0
Residuals, % 0 to 0.5
0