MakeItFrom.com
Menu (ESC)

C67400 Bronze vs. ACI-ASTM CF16F Steel

C67400 bronze belongs to the copper alloys classification, while ACI-ASTM CF16F steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C67400 bronze and the bottom bar is ACI-ASTM CF16F steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 22 to 28
50
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 41
77
Tensile Strength: Ultimate (UTS), MPa 480 to 610
530
Tensile Strength: Yield (Proof), MPa 250 to 370
280

Thermal Properties

Latent Heat of Fusion, J/g 190
300
Maximum Temperature: Mechanical, °C 130
980
Melting Completion (Liquidus), °C 890
1420
Melting Onset (Solidus), °C 870
1400
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 100
16
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 26
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 23
18
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.8
3.4
Embodied Energy, MJ/kg 48
47
Embodied Water, L/kg 330
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
220
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 660
190
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 17 to 22
19
Strength to Weight: Bending, points 17 to 20
19
Thermal Diffusivity, mm2/s 32
4.3
Thermal Shock Resistance, points 16 to 20
12

Alloy Composition

Aluminum (Al), % 0.5 to 2.0
0
Carbon (C), % 0
0 to 0.16
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 57 to 60
0
Iron (Fe), % 0 to 0.35
61.3 to 72.8
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 2.0 to 3.5
0 to 1.5
Molybdenum (Mo), % 0
0 to 1.5
Nickel (Ni), % 0 to 0.25
9.0 to 12
Phosphorus (P), % 0
0 to 0.17
Selenium (Se), % 0
0.2 to 0.35
Silicon (Si), % 0.5 to 1.5
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 31.1 to 40
0
Residuals, % 0 to 0.5
0