MakeItFrom.com
Menu (ESC)

C67400 Bronze vs. AISI 201LN Stainless Steel

C67400 bronze belongs to the copper alloys classification, while AISI 201LN stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C67400 bronze and the bottom bar is AISI 201LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 22 to 28
25 to 51
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 41
77
Shear Strength, MPa 310 to 350
530 to 680
Tensile Strength: Ultimate (UTS), MPa 480 to 610
740 to 1060
Tensile Strength: Yield (Proof), MPa 250 to 370
350 to 770

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Maximum Temperature: Mechanical, °C 130
880
Melting Completion (Liquidus), °C 890
1410
Melting Onset (Solidus), °C 870
1370
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 100
15
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 26
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 23
12
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.6
Embodied Energy, MJ/kg 48
38
Embodied Water, L/kg 330
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
230 to 310
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 660
310 to 1520
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 17 to 22
27 to 38
Strength to Weight: Bending, points 17 to 20
24 to 30
Thermal Diffusivity, mm2/s 32
4.0
Thermal Shock Resistance, points 16 to 20
16 to 23

Alloy Composition

Aluminum (Al), % 0.5 to 2.0
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 17.5
Copper (Cu), % 57 to 60
0 to 1.0
Iron (Fe), % 0 to 0.35
67.9 to 73.5
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 2.0 to 3.5
6.4 to 7.5
Nickel (Ni), % 0 to 0.25
4.0 to 5.0
Nitrogen (N), % 0
0.1 to 0.25
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.5 to 1.5
0 to 0.75
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 31.1 to 40
0
Residuals, % 0 to 0.5
0