MakeItFrom.com
Menu (ESC)

C67400 Bronze vs. AISI 202 Stainless Steel

C67400 bronze belongs to the copper alloys classification, while AISI 202 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C67400 bronze and the bottom bar is AISI 202 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 22 to 28
14 to 45
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 41
77
Shear Strength, MPa 310 to 350
490 to 590
Tensile Strength: Ultimate (UTS), MPa 480 to 610
700 to 980
Tensile Strength: Yield (Proof), MPa 250 to 370
310 to 580

Thermal Properties

Latent Heat of Fusion, J/g 190
290
Maximum Temperature: Mechanical, °C 130
910
Melting Completion (Liquidus), °C 890
1400
Melting Onset (Solidus), °C 870
1360
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 100
15
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 26
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 23
13
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.8
Embodied Energy, MJ/kg 48
40
Embodied Water, L/kg 330
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
120 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 660
250 to 840
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 17 to 22
25 to 35
Strength to Weight: Bending, points 17 to 20
23 to 29
Thermal Diffusivity, mm2/s 32
4.0
Thermal Shock Resistance, points 16 to 20
15 to 21

Alloy Composition

Aluminum (Al), % 0.5 to 2.0
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 57 to 60
0
Iron (Fe), % 0 to 0.35
63.5 to 71.5
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 2.0 to 3.5
7.5 to 10
Nickel (Ni), % 0 to 0.25
4.0 to 6.0
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0.5 to 1.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 31.1 to 40
0
Residuals, % 0 to 0.5
0