MakeItFrom.com
Menu (ESC)

C67400 Bronze vs. AISI 317LMN Stainless Steel

C67400 bronze belongs to the copper alloys classification, while AISI 317LMN stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C67400 bronze and the bottom bar is AISI 317LMN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 22 to 28
45
Poisson's Ratio 0.31
0.28
Rockwell B Hardness 78 to 85
84
Shear Modulus, GPa 41
79
Shear Strength, MPa 310 to 350
430
Tensile Strength: Ultimate (UTS), MPa 480 to 610
620
Tensile Strength: Yield (Proof), MPa 250 to 370
270

Thermal Properties

Latent Heat of Fusion, J/g 190
290
Maximum Temperature: Mechanical, °C 130
1020
Melting Completion (Liquidus), °C 890
1460
Melting Onset (Solidus), °C 870
1410
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 100
14
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 26
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 23
24
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 2.8
4.8
Embodied Energy, MJ/kg 48
65
Embodied Water, L/kg 330
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
230
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 660
180
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 17 to 22
22
Strength to Weight: Bending, points 17 to 20
20
Thermal Diffusivity, mm2/s 32
3.8
Thermal Shock Resistance, points 16 to 20
14

Alloy Composition

Aluminum (Al), % 0.5 to 2.0
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17 to 20
Copper (Cu), % 57 to 60
0
Iron (Fe), % 0 to 0.35
54.4 to 65.4
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 2.0 to 3.5
0 to 2.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0 to 0.25
13.5 to 17.5
Nitrogen (N), % 0
0.1 to 0.2
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.5 to 1.5
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 31.1 to 40
0
Residuals, % 0 to 0.5
0