MakeItFrom.com
Menu (ESC)

C67400 Bronze vs. ASTM A387 Grade 21 Steel

C67400 bronze belongs to the copper alloys classification, while ASTM A387 grade 21 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C67400 bronze and the bottom bar is ASTM A387 grade 21 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 22 to 28
21
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 41
74
Shear Strength, MPa 310 to 350
310 to 370
Tensile Strength: Ultimate (UTS), MPa 480 to 610
500 to 590
Tensile Strength: Yield (Proof), MPa 250 to 370
230 to 350

Thermal Properties

Latent Heat of Fusion, J/g 190
260
Maximum Temperature: Mechanical, °C 130
480
Melting Completion (Liquidus), °C 890
1470
Melting Onset (Solidus), °C 870
1430
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 100
41
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 26
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 23
4.1
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 2.8
1.8
Embodied Energy, MJ/kg 48
23
Embodied Water, L/kg 330
62

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
84 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 660
140 to 320
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 17 to 22
18 to 21
Strength to Weight: Bending, points 17 to 20
18 to 20
Thermal Diffusivity, mm2/s 32
11
Thermal Shock Resistance, points 16 to 20
14 to 17

Alloy Composition

Aluminum (Al), % 0.5 to 2.0
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
2.8 to 3.3
Copper (Cu), % 57 to 60
0
Iron (Fe), % 0 to 0.35
94.4 to 96
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 2.0 to 3.5
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.5 to 1.5
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 31.1 to 40
0
Residuals, % 0 to 0.5
0