MakeItFrom.com
Menu (ESC)

C67400 Bronze vs. ASTM Grade HP Steel

C67400 bronze belongs to the copper alloys classification, while ASTM grade HP steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C67400 bronze and the bottom bar is ASTM grade HP steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 22 to 28
5.1
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 41
78
Tensile Strength: Ultimate (UTS), MPa 480 to 610
490
Tensile Strength: Yield (Proof), MPa 250 to 370
260

Thermal Properties

Latent Heat of Fusion, J/g 190
320
Maximum Temperature: Mechanical, °C 130
1100
Melting Completion (Liquidus), °C 890
1370
Melting Onset (Solidus), °C 870
1330
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 100
12
Thermal Expansion, µm/m-K 21
16

Otherwise Unclassified Properties

Base Metal Price, % relative 23
34
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 2.8
5.8
Embodied Energy, MJ/kg 48
82
Embodied Water, L/kg 330
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
21
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 660
170
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 17 to 22
17
Strength to Weight: Bending, points 17 to 20
17
Thermal Diffusivity, mm2/s 32
3.2
Thermal Shock Resistance, points 16 to 20
11

Alloy Composition

Aluminum (Al), % 0.5 to 2.0
0
Carbon (C), % 0
0.35 to 0.75
Chromium (Cr), % 0
24 to 28
Copper (Cu), % 57 to 60
0
Iron (Fe), % 0 to 0.35
29.2 to 42.7
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 2.0 to 3.5
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.25
33 to 37
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.5 to 1.5
0 to 2.5
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 31.1 to 40
0
Residuals, % 0 to 0.5
0