MakeItFrom.com
Menu (ESC)

C67400 Bronze vs. AWS E320

C67400 bronze belongs to the copper alloys classification, while AWS E320 belongs to the iron alloys. There are 20 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is C67400 bronze and the bottom bar is AWS E320.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 22 to 28
34
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 41
77
Tensile Strength: Ultimate (UTS), MPa 480 to 610
620

Thermal Properties

Latent Heat of Fusion, J/g 190
300
Melting Completion (Liquidus), °C 890
1410
Melting Onset (Solidus), °C 870
1360
Specific Heat Capacity, J/kg-K 400
460
Thermal Expansion, µm/m-K 21
14

Otherwise Unclassified Properties

Base Metal Price, % relative 23
38
Density, g/cm3 7.9
8.2
Embodied Carbon, kg CO2/kg material 2.8
6.5
Embodied Energy, MJ/kg 48
91
Embodied Water, L/kg 330
220

Common Calculations

Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 17 to 22
21
Strength to Weight: Bending, points 17 to 20
20
Thermal Shock Resistance, points 16 to 20
16

Alloy Composition

Aluminum (Al), % 0.5 to 2.0
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 57 to 60
3.0 to 4.0
Iron (Fe), % 0 to 0.35
31.8 to 43.5
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 2.0 to 3.5
0.5 to 2.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.25
32 to 36
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.5 to 1.5
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 31.1 to 40
0
Residuals, % 0 to 0.5
0