MakeItFrom.com
Menu (ESC)

C67400 Bronze vs. EN 1.3967 Stainless Steel

C67400 bronze belongs to the copper alloys classification, while EN 1.3967 stainless steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is C67400 bronze and the bottom bar is EN 1.3967 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 22 to 28
22
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 41
79
Tensile Strength: Ultimate (UTS), MPa 480 to 610
690
Tensile Strength: Yield (Proof), MPa 250 to 370
350

Thermal Properties

Latent Heat of Fusion, J/g 190
300
Maximum Temperature: Mechanical, °C 130
1070
Melting Completion (Liquidus), °C 890
1430
Melting Onset (Solidus), °C 870
1380
Specific Heat Capacity, J/kg-K 400
470
Thermal Expansion, µm/m-K 21
16

Otherwise Unclassified Properties

Base Metal Price, % relative 23
25
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 2.8
4.8
Embodied Energy, MJ/kg 48
66
Embodied Water, L/kg 330
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
130
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 660
310
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 17 to 22
24
Strength to Weight: Bending, points 17 to 20
22
Thermal Shock Resistance, points 16 to 20
15

Alloy Composition

Aluminum (Al), % 0.5 to 2.0
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20 to 21.5
Copper (Cu), % 57 to 60
0
Iron (Fe), % 0 to 0.35
50.3 to 57.8
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 2.0 to 3.5
4.0 to 6.0
Molybdenum (Mo), % 0
3.0 to 3.5
Nickel (Ni), % 0 to 0.25
15 to 17
Niobium (Nb), % 0
0 to 0.25
Nitrogen (N), % 0
0.2 to 0.35
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.5 to 1.5
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 31.1 to 40
0
Residuals, % 0 to 0.5
0