MakeItFrom.com
Menu (ESC)

C67400 Bronze vs. EN 1.4567 Stainless Steel

C67400 bronze belongs to the copper alloys classification, while EN 1.4567 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C67400 bronze and the bottom bar is EN 1.4567 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 22 to 28
22 to 51
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 41
76
Shear Strength, MPa 310 to 350
390 to 490
Tensile Strength: Ultimate (UTS), MPa 480 to 610
550 to 780
Tensile Strength: Yield (Proof), MPa 250 to 370
200 to 390

Thermal Properties

Latent Heat of Fusion, J/g 190
290
Maximum Temperature: Mechanical, °C 130
930
Melting Completion (Liquidus), °C 890
1410
Melting Onset (Solidus), °C 870
1370
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 100
11
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 26
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 23
16
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.8
3.1
Embodied Energy, MJ/kg 48
43
Embodied Water, L/kg 330
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
150 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 660
100 to 400
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 17 to 22
19 to 27
Strength to Weight: Bending, points 17 to 20
19 to 24
Thermal Diffusivity, mm2/s 32
3.0
Thermal Shock Resistance, points 16 to 20
12 to 17

Alloy Composition

Aluminum (Al), % 0.5 to 2.0
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 57 to 60
3.0 to 4.0
Iron (Fe), % 0 to 0.35
63.3 to 71.5
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 2.0 to 3.5
0 to 2.0
Nickel (Ni), % 0 to 0.25
8.5 to 10.5
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.5 to 1.5
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 31.1 to 40
0
Residuals, % 0 to 0.5
0