MakeItFrom.com
Menu (ESC)

C67400 Bronze vs. EN 1.4592 Stainless Steel

C67400 bronze belongs to the copper alloys classification, while EN 1.4592 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C67400 bronze and the bottom bar is EN 1.4592 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 22 to 28
23
Poisson's Ratio 0.31
0.27
Shear Modulus, GPa 41
82
Shear Strength, MPa 310 to 350
400
Tensile Strength: Ultimate (UTS), MPa 480 to 610
630
Tensile Strength: Yield (Proof), MPa 250 to 370
500

Thermal Properties

Latent Heat of Fusion, J/g 190
310
Maximum Temperature: Mechanical, °C 130
1100
Melting Completion (Liquidus), °C 890
1460
Melting Onset (Solidus), °C 870
1410
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 100
17
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 26
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 23
18
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 2.8
3.8
Embodied Energy, MJ/kg 48
52
Embodied Water, L/kg 330
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
130
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 660
610
Stiffness to Weight: Axial, points 7.5
15
Stiffness to Weight: Bending, points 20
26
Strength to Weight: Axial, points 17 to 22
23
Strength to Weight: Bending, points 17 to 20
21
Thermal Diffusivity, mm2/s 32
4.6
Thermal Shock Resistance, points 16 to 20
20

Alloy Composition

Aluminum (Al), % 0.5 to 2.0
0
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0
28 to 30
Copper (Cu), % 57 to 60
0
Iron (Fe), % 0 to 0.35
62.6 to 68.4
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 2.0 to 3.5
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 4.5
Nickel (Ni), % 0 to 0.25
0
Nitrogen (N), % 0
0 to 0.045
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.5 to 1.5
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.3
0
Titanium (Ti), % 0
0.15 to 0.8
Zinc (Zn), % 31.1 to 40
0
Residuals, % 0 to 0.5
0