MakeItFrom.com
Menu (ESC)

C67400 Bronze vs. EN 1.4658 Stainless Steel

C67400 bronze belongs to the copper alloys classification, while EN 1.4658 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C67400 bronze and the bottom bar is EN 1.4658 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 22 to 28
28
Poisson's Ratio 0.31
0.27
Shear Modulus, GPa 41
81
Shear Strength, MPa 310 to 350
580
Tensile Strength: Ultimate (UTS), MPa 480 to 610
900
Tensile Strength: Yield (Proof), MPa 250 to 370
730

Thermal Properties

Latent Heat of Fusion, J/g 190
300
Maximum Temperature: Mechanical, °C 130
1100
Melting Completion (Liquidus), °C 890
1450
Melting Onset (Solidus), °C 870
1400
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 100
16
Thermal Expansion, µm/m-K 21
13

Otherwise Unclassified Properties

Base Metal Price, % relative 23
25
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.8
4.5
Embodied Energy, MJ/kg 48
61
Embodied Water, L/kg 330
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
240
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 660
1280
Stiffness to Weight: Axial, points 7.5
15
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 17 to 22
32
Strength to Weight: Bending, points 17 to 20
26
Thermal Diffusivity, mm2/s 32
4.3
Thermal Shock Resistance, points 16 to 20
24

Alloy Composition

Aluminum (Al), % 0.5 to 2.0
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
26 to 29
Cobalt (Co), % 0
0.5 to 2.0
Copper (Cu), % 57 to 60
0 to 1.0
Iron (Fe), % 0 to 0.35
50.9 to 63.7
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 2.0 to 3.5
0 to 1.5
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0 to 0.25
5.5 to 9.5
Nitrogen (N), % 0
0.3 to 0.5
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0.5 to 1.5
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 31.1 to 40
0
Residuals, % 0 to 0.5
0