MakeItFrom.com
Menu (ESC)

C67400 Bronze vs. SAE-AISI 52100 Steel

C67400 bronze belongs to the copper alloys classification, while SAE-AISI 52100 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C67400 bronze and the bottom bar is SAE-AISI 52100 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 22 to 28
10 to 20
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 41
72
Shear Strength, MPa 310 to 350
370 to 420
Tensile Strength: Ultimate (UTS), MPa 480 to 610
590 to 2010
Tensile Strength: Yield (Proof), MPa 250 to 370
360 to 560

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 130
430
Melting Completion (Liquidus), °C 890
1450
Melting Onset (Solidus), °C 870
1410
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 100
47
Thermal Expansion, µm/m-K 21
12 to 13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 26
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 23
2.4
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.5
Embodied Energy, MJ/kg 48
20
Embodied Water, L/kg 330
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
54 to 310
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 660
350 to 840
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 17 to 22
21 to 72
Strength to Weight: Bending, points 17 to 20
20 to 45
Thermal Diffusivity, mm2/s 32
13
Thermal Shock Resistance, points 16 to 20
19 to 61

Alloy Composition

Aluminum (Al), % 0.5 to 2.0
0
Carbon (C), % 0
0.93 to 1.1
Chromium (Cr), % 0
1.4 to 1.6
Copper (Cu), % 57 to 60
0
Iron (Fe), % 0 to 0.35
96.5 to 97.3
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 2.0 to 3.5
0.25 to 0.45
Nickel (Ni), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.5 to 1.5
0.15 to 0.35
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 31.1 to 40
0
Residuals, % 0 to 0.5
0