MakeItFrom.com
Menu (ESC)

C67400 Bronze vs. SAE-AISI 9260 Steel

C67400 bronze belongs to the copper alloys classification, while SAE-AISI 9260 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C67400 bronze and the bottom bar is SAE-AISI 9260 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 22 to 28
21
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 41
72
Shear Strength, MPa 310 to 350
420
Tensile Strength: Ultimate (UTS), MPa 480 to 610
660
Tensile Strength: Yield (Proof), MPa 250 to 370
380

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Maximum Temperature: Mechanical, °C 130
400
Melting Completion (Liquidus), °C 890
1430
Melting Onset (Solidus), °C 870
1390
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 100
45
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 26
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 23
2.0
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 2.8
1.5
Embodied Energy, MJ/kg 48
20
Embodied Water, L/kg 330
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
120
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 660
380
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 17 to 22
24
Strength to Weight: Bending, points 17 to 20
22
Thermal Diffusivity, mm2/s 32
12
Thermal Shock Resistance, points 16 to 20
20

Alloy Composition

Aluminum (Al), % 0.5 to 2.0
0
Carbon (C), % 0
0.56 to 0.64
Copper (Cu), % 57 to 60
0
Iron (Fe), % 0 to 0.35
96.1 to 96.9
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 2.0 to 3.5
0.75 to 1.0
Nickel (Ni), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0.5 to 1.5
1.8 to 2.2
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 31.1 to 40
0
Residuals, % 0 to 0.5
0