MakeItFrom.com
Menu (ESC)

C67400 Bronze vs. C92200 Bronze

Both C67400 bronze and C92200 bronze are copper alloys. They have 63% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C67400 bronze and the bottom bar is C92200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 22 to 28
25
Poisson's Ratio 0.31
0.34
Rockwell B Hardness 78 to 85
65
Shear Modulus, GPa 41
41
Tensile Strength: Ultimate (UTS), MPa 480 to 610
280
Tensile Strength: Yield (Proof), MPa 250 to 370
140

Thermal Properties

Latent Heat of Fusion, J/g 190
190
Maximum Temperature: Mechanical, °C 130
170
Melting Completion (Liquidus), °C 890
990
Melting Onset (Solidus), °C 870
830
Specific Heat Capacity, J/kg-K 400
370
Thermal Conductivity, W/m-K 100
70
Thermal Expansion, µm/m-K 21
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
14
Electrical Conductivity: Equal Weight (Specific), % IACS 26
14

Otherwise Unclassified Properties

Base Metal Price, % relative 23
32
Density, g/cm3 7.9
8.7
Embodied Carbon, kg CO2/kg material 2.8
3.2
Embodied Energy, MJ/kg 48
52
Embodied Water, L/kg 330
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
58
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 660
87
Stiffness to Weight: Axial, points 7.5
6.9
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 17 to 22
8.9
Strength to Weight: Bending, points 17 to 20
11
Thermal Diffusivity, mm2/s 32
21
Thermal Shock Resistance, points 16 to 20
9.9

Alloy Composition

Aluminum (Al), % 0.5 to 2.0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Copper (Cu), % 57 to 60
86 to 90
Iron (Fe), % 0 to 0.35
0 to 0.25
Lead (Pb), % 0 to 0.5
1.0 to 2.0
Manganese (Mn), % 2.0 to 3.5
0
Nickel (Ni), % 0 to 0.25
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0.5 to 1.5
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.3
5.5 to 6.5
Zinc (Zn), % 31.1 to 40
3.0 to 5.0
Residuals, % 0
0 to 0.7