MakeItFrom.com
Menu (ESC)

C67400 Bronze vs. N07716 Nickel

C67400 bronze belongs to the copper alloys classification, while N07716 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C67400 bronze and the bottom bar is N07716 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 22 to 28
34
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 41
78
Shear Strength, MPa 310 to 350
580
Tensile Strength: Ultimate (UTS), MPa 480 to 610
860
Tensile Strength: Yield (Proof), MPa 250 to 370
350

Thermal Properties

Latent Heat of Fusion, J/g 190
320
Maximum Temperature: Mechanical, °C 130
980
Melting Completion (Liquidus), °C 890
1480
Melting Onset (Solidus), °C 870
1430
Specific Heat Capacity, J/kg-K 400
440
Thermal Conductivity, W/m-K 100
11
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 26
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 23
75
Density, g/cm3 7.9
8.5
Embodied Carbon, kg CO2/kg material 2.8
13
Embodied Energy, MJ/kg 48
190
Embodied Water, L/kg 330
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
240
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 660
300
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 20
23
Strength to Weight: Axial, points 17 to 22
28
Strength to Weight: Bending, points 17 to 20
24
Thermal Diffusivity, mm2/s 32
2.8
Thermal Shock Resistance, points 16 to 20
24

Alloy Composition

Aluminum (Al), % 0.5 to 2.0
0 to 0.35
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19 to 22
Copper (Cu), % 57 to 60
0
Iron (Fe), % 0 to 0.35
0 to 11.3
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 2.0 to 3.5
0 to 0.2
Molybdenum (Mo), % 0
7.0 to 9.5
Nickel (Ni), % 0 to 0.25
59 to 63
Niobium (Nb), % 0
2.8 to 4.0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0.5 to 1.5
0 to 0.2
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.3
0
Titanium (Ti), % 0
1.0 to 1.6
Zinc (Zn), % 31.1 to 40
0
Residuals, % 0 to 0.5
0