MakeItFrom.com
Menu (ESC)

C67400 Bronze vs. N08120 Nickel

C67400 bronze belongs to the copper alloys classification, while N08120 nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C67400 bronze and the bottom bar is N08120 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 22 to 28
34
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 41
79
Shear Strength, MPa 310 to 350
470
Tensile Strength: Ultimate (UTS), MPa 480 to 610
700
Tensile Strength: Yield (Proof), MPa 250 to 370
310

Thermal Properties

Latent Heat of Fusion, J/g 190
310
Maximum Temperature: Mechanical, °C 130
1000
Melting Completion (Liquidus), °C 890
1420
Melting Onset (Solidus), °C 870
1370
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 100
11
Thermal Expansion, µm/m-K 21
14

Otherwise Unclassified Properties

Base Metal Price, % relative 23
45
Density, g/cm3 7.9
8.2
Embodied Carbon, kg CO2/kg material 2.8
7.2
Embodied Energy, MJ/kg 48
100
Embodied Water, L/kg 330
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
190
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 660
240
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 17 to 22
24
Strength to Weight: Bending, points 17 to 20
21
Thermal Diffusivity, mm2/s 32
3.0
Thermal Shock Resistance, points 16 to 20
17

Alloy Composition

Aluminum (Al), % 0.5 to 2.0
0 to 0.4
Boron (B), % 0
0 to 0.010
Carbon (C), % 0
0.020 to 0.1
Chromium (Cr), % 0
23 to 27
Cobalt (Co), % 0
0 to 3.0
Copper (Cu), % 57 to 60
0 to 0.5
Iron (Fe), % 0 to 0.35
21 to 41.4
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 2.0 to 3.5
0 to 1.5
Molybdenum (Mo), % 0
0 to 2.5
Nickel (Ni), % 0 to 0.25
35 to 39
Niobium (Nb), % 0
0.4 to 0.9
Nitrogen (N), % 0
0.15 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.5 to 1.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.3
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0
0 to 2.5
Zinc (Zn), % 31.1 to 40
0
Residuals, % 0 to 0.5
0