MakeItFrom.com
Menu (ESC)

C67400 Bronze vs. S41425 Stainless Steel

C67400 bronze belongs to the copper alloys classification, while S41425 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C67400 bronze and the bottom bar is S41425 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 22 to 28
17
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 41
77
Shear Strength, MPa 310 to 350
570
Tensile Strength: Ultimate (UTS), MPa 480 to 610
920
Tensile Strength: Yield (Proof), MPa 250 to 370
750

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Maximum Temperature: Mechanical, °C 130
810
Melting Completion (Liquidus), °C 890
1450
Melting Onset (Solidus), °C 870
1410
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 100
16
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 26
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 23
13
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 2.8
2.9
Embodied Energy, MJ/kg 48
40
Embodied Water, L/kg 330
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
150
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 660
1420
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 17 to 22
33
Strength to Weight: Bending, points 17 to 20
27
Thermal Diffusivity, mm2/s 32
4.4
Thermal Shock Resistance, points 16 to 20
33

Alloy Composition

Aluminum (Al), % 0.5 to 2.0
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
12 to 15
Copper (Cu), % 57 to 60
0 to 0.3
Iron (Fe), % 0 to 0.35
74 to 81.9
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 2.0 to 3.5
0.5 to 1.0
Molybdenum (Mo), % 0
1.5 to 2.0
Nickel (Ni), % 0 to 0.25
4.0 to 7.0
Nitrogen (N), % 0
0.060 to 0.12
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.5 to 1.5
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 31.1 to 40
0
Residuals, % 0 to 0.5
0