MakeItFrom.com
Menu (ESC)

C67400 Bronze vs. S44330 Stainless Steel

C67400 bronze belongs to the copper alloys classification, while S44330 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C67400 bronze and the bottom bar is S44330 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 22 to 28
25
Poisson's Ratio 0.31
0.27
Rockwell B Hardness 78 to 85
79
Shear Modulus, GPa 41
78
Shear Strength, MPa 310 to 350
280
Tensile Strength: Ultimate (UTS), MPa 480 to 610
440
Tensile Strength: Yield (Proof), MPa 250 to 370
230

Thermal Properties

Latent Heat of Fusion, J/g 190
290
Maximum Temperature: Mechanical, °C 130
990
Melting Completion (Liquidus), °C 890
1440
Melting Onset (Solidus), °C 870
1390
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 100
21
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 26
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 23
13
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.8
Embodied Energy, MJ/kg 48
40
Embodied Water, L/kg 330
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
91
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 660
140
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 17 to 22
16
Strength to Weight: Bending, points 17 to 20
17
Thermal Diffusivity, mm2/s 32
5.7
Thermal Shock Resistance, points 16 to 20
16

Alloy Composition

Aluminum (Al), % 0.5 to 2.0
0
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0
20 to 23
Copper (Cu), % 57 to 60
0.3 to 0.8
Iron (Fe), % 0 to 0.35
72.5 to 79.7
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 2.0 to 3.5
0 to 1.0
Nickel (Ni), % 0 to 0.25
0
Niobium (Nb), % 0
0 to 0.8
Nitrogen (N), % 0
0 to 0.025
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.5 to 1.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.3
0
Titanium (Ti), % 0
0 to 0.8
Zinc (Zn), % 31.1 to 40
0
Residuals, % 0 to 0.5
0