MakeItFrom.com
Menu (ESC)

C67400 Bronze vs. S45000 Stainless Steel

C67400 bronze belongs to the copper alloys classification, while S45000 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C67400 bronze and the bottom bar is S45000 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 22 to 28
6.8 to 14
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 41
76
Shear Strength, MPa 310 to 350
590 to 830
Tensile Strength: Ultimate (UTS), MPa 480 to 610
980 to 1410
Tensile Strength: Yield (Proof), MPa 250 to 370
580 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Maximum Temperature: Mechanical, °C 130
840
Melting Completion (Liquidus), °C 890
1440
Melting Onset (Solidus), °C 870
1390
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 100
17
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 26
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 23
13
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.8
Embodied Energy, MJ/kg 48
39
Embodied Water, L/kg 330
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
94 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 660
850 to 4400
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 17 to 22
35 to 50
Strength to Weight: Bending, points 17 to 20
28 to 36
Thermal Diffusivity, mm2/s 32
4.5
Thermal Shock Resistance, points 16 to 20
33 to 47

Alloy Composition

Aluminum (Al), % 0.5 to 2.0
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
14 to 16
Copper (Cu), % 57 to 60
1.3 to 1.8
Iron (Fe), % 0 to 0.35
72.1 to 79.3
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 2.0 to 3.5
0 to 1.0
Molybdenum (Mo), % 0
0.5 to 1.0
Nickel (Ni), % 0 to 0.25
5.0 to 7.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.5 to 1.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 31.1 to 40
0
Residuals, % 0 to 0.5
0