MakeItFrom.com
Menu (ESC)

C67500 Bronze vs. C95800 Bronze

Both C67500 bronze and C95800 bronze are copper alloys. They have 61% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C67500 bronze and the bottom bar is C95800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
120
Elongation at Break, % 14 to 33
22
Poisson's Ratio 0.3
0.34
Shear Modulus, GPa 40
44
Tensile Strength: Ultimate (UTS), MPa 430 to 580
660
Tensile Strength: Yield (Proof), MPa 170 to 370
270

Thermal Properties

Latent Heat of Fusion, J/g 170
230
Maximum Temperature: Mechanical, °C 120
230
Melting Completion (Liquidus), °C 890
1060
Melting Onset (Solidus), °C 870
1040
Specific Heat Capacity, J/kg-K 390
440
Thermal Conductivity, W/m-K 110
36
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 27
7.6

Otherwise Unclassified Properties

Base Metal Price, % relative 23
29
Density, g/cm3 8.0
8.3
Embodied Carbon, kg CO2/kg material 2.8
3.4
Embodied Energy, MJ/kg 47
55
Embodied Water, L/kg 330
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 130
110
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 650
310
Stiffness to Weight: Axial, points 7.3
7.9
Stiffness to Weight: Bending, points 20
20
Strength to Weight: Axial, points 15 to 20
22
Strength to Weight: Bending, points 16 to 19
20
Thermal Diffusivity, mm2/s 34
9.9
Thermal Shock Resistance, points 14 to 19
23

Alloy Composition

Aluminum (Al), % 0 to 0.25
8.5 to 9.5
Copper (Cu), % 57 to 60
79 to 83.2
Iron (Fe), % 0.8 to 2.0
3.5 to 4.5
Lead (Pb), % 0 to 0.2
0 to 0.030
Manganese (Mn), % 0.050 to 0.5
0.8 to 1.5
Nickel (Ni), % 0
4.0 to 5.0
Silicon (Si), % 0
0 to 0.1
Tin (Sn), % 0.5 to 1.5
0
Zinc (Zn), % 35.1 to 41.7
0
Residuals, % 0
0 to 0.5