MakeItFrom.com
Menu (ESC)

C67500 Bronze vs. N08020 Stainless Steel

C67500 bronze belongs to the copper alloys classification, while N08020 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C67500 bronze and the bottom bar is N08020 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 14 to 33
15 to 34
Poisson's Ratio 0.3
0.28
Shear Modulus, GPa 40
77
Shear Strength, MPa 270 to 350
380 to 410
Tensile Strength: Ultimate (UTS), MPa 430 to 580
610 to 620
Tensile Strength: Yield (Proof), MPa 170 to 370
270 to 420

Thermal Properties

Latent Heat of Fusion, J/g 170
300
Maximum Temperature: Mechanical, °C 120
1100
Melting Completion (Liquidus), °C 890
1410
Melting Onset (Solidus), °C 870
1360
Specific Heat Capacity, J/kg-K 390
460
Thermal Conductivity, W/m-K 110
12
Thermal Expansion, µm/m-K 21
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 27
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 23
38
Density, g/cm3 8.0
8.2
Embodied Carbon, kg CO2/kg material 2.8
6.6
Embodied Energy, MJ/kg 47
92
Embodied Water, L/kg 330
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 130
83 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 650
180 to 440
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 15 to 20
21
Strength to Weight: Bending, points 16 to 19
20
Thermal Diffusivity, mm2/s 34
3.2
Thermal Shock Resistance, points 14 to 19
15

Alloy Composition

Aluminum (Al), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 57 to 60
3.0 to 4.0
Iron (Fe), % 0.8 to 2.0
29.9 to 44
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 0.050 to 0.5
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
32 to 38
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.035
Tin (Sn), % 0.5 to 1.5
0
Zinc (Zn), % 35.1 to 41.7
0
Residuals, % 0 to 0.5
0