MakeItFrom.com
Menu (ESC)

C67500 Bronze vs. S21603 Stainless Steel

C67500 bronze belongs to the copper alloys classification, while S21603 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is C67500 bronze and the bottom bar is S21603 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 14 to 33
45
Poisson's Ratio 0.3
0.28
Shear Modulus, GPa 40
79
Shear Strength, MPa 270 to 350
490
Tensile Strength: Ultimate (UTS), MPa 430 to 580
690
Tensile Strength: Yield (Proof), MPa 170 to 370
390

Thermal Properties

Latent Heat of Fusion, J/g 170
290
Maximum Temperature: Mechanical, °C 120
990
Melting Completion (Liquidus), °C 890
1420
Melting Onset (Solidus), °C 870
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Expansion, µm/m-K 21
17

Otherwise Unclassified Properties

Base Metal Price, % relative 23
17
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.8
3.6
Embodied Energy, MJ/kg 47
50
Embodied Water, L/kg 330
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 130
270
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 650
380
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 15 to 20
25
Strength to Weight: Bending, points 16 to 19
22
Thermal Shock Resistance, points 14 to 19
15

Alloy Composition

Aluminum (Al), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17.5 to 22
Copper (Cu), % 57 to 60
0
Iron (Fe), % 0.8 to 2.0
57.6 to 67.8
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 0.050 to 0.5
7.5 to 9.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
5.0 to 7.0
Nitrogen (N), % 0
0.25 to 0.5
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.5 to 1.5
0
Zinc (Zn), % 35.1 to 41.7
0
Residuals, % 0 to 0.5
0