MakeItFrom.com
Menu (ESC)

C67500 Bronze vs. S34565 Stainless Steel

C67500 bronze belongs to the copper alloys classification, while S34565 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C67500 bronze and the bottom bar is S34565 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
210
Elongation at Break, % 14 to 33
39
Poisson's Ratio 0.3
0.28
Shear Modulus, GPa 40
80
Shear Strength, MPa 270 to 350
610
Tensile Strength: Ultimate (UTS), MPa 430 to 580
900
Tensile Strength: Yield (Proof), MPa 170 to 370
470

Thermal Properties

Latent Heat of Fusion, J/g 170
310
Maximum Temperature: Mechanical, °C 120
1100
Melting Completion (Liquidus), °C 890
1420
Melting Onset (Solidus), °C 870
1380
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 110
12
Thermal Expansion, µm/m-K 21
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 27
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 23
28
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 2.8
5.3
Embodied Energy, MJ/kg 47
73
Embodied Water, L/kg 330
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 130
300
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 650
540
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 15 to 20
32
Strength to Weight: Bending, points 16 to 19
26
Thermal Diffusivity, mm2/s 34
3.2
Thermal Shock Resistance, points 14 to 19
22

Alloy Composition

Aluminum (Al), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 57 to 60
0
Iron (Fe), % 0.8 to 2.0
43.2 to 51.6
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 0.050 to 0.5
5.0 to 7.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0
16 to 18
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0
0.4 to 0.6
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0.5 to 1.5
0
Zinc (Zn), % 35.1 to 41.7
0
Residuals, % 0 to 0.5
0