MakeItFrom.com
Menu (ESC)

C67500 Bronze vs. S40977 Stainless Steel

C67500 bronze belongs to the copper alloys classification, while S40977 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C67500 bronze and the bottom bar is S40977 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 14 to 33
21
Poisson's Ratio 0.3
0.28
Shear Modulus, GPa 40
76
Shear Strength, MPa 270 to 350
320
Tensile Strength: Ultimate (UTS), MPa 430 to 580
510
Tensile Strength: Yield (Proof), MPa 170 to 370
310

Thermal Properties

Latent Heat of Fusion, J/g 170
270
Maximum Temperature: Mechanical, °C 120
720
Melting Completion (Liquidus), °C 890
1440
Melting Onset (Solidus), °C 870
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 110
25
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 27
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 23
6.5
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.9
Embodied Energy, MJ/kg 47
27
Embodied Water, L/kg 330
97

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 130
92
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 650
250
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 15 to 20
18
Strength to Weight: Bending, points 16 to 19
18
Thermal Diffusivity, mm2/s 34
6.7
Thermal Shock Resistance, points 14 to 19
18

Alloy Composition

Aluminum (Al), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
10.5 to 12.5
Copper (Cu), % 57 to 60
0
Iron (Fe), % 0.8 to 2.0
83.9 to 89.2
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 0.050 to 0.5
0 to 1.5
Nickel (Ni), % 0
0.3 to 1.0
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.5 to 1.5
0
Zinc (Zn), % 35.1 to 41.7
0
Residuals, % 0 to 0.5
0