MakeItFrom.com
Menu (ESC)

C67500 Bronze vs. S44700 Stainless Steel

C67500 bronze belongs to the copper alloys classification, while S44700 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is C67500 bronze and the bottom bar is S44700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
210
Elongation at Break, % 14 to 33
23
Poisson's Ratio 0.3
0.27
Shear Modulus, GPa 40
82
Shear Strength, MPa 270 to 350
380
Tensile Strength: Ultimate (UTS), MPa 430 to 580
600
Tensile Strength: Yield (Proof), MPa 170 to 370
450

Thermal Properties

Latent Heat of Fusion, J/g 170
300
Maximum Temperature: Mechanical, °C 120
1100
Melting Completion (Liquidus), °C 890
1460
Melting Onset (Solidus), °C 870
1410
Specific Heat Capacity, J/kg-K 390
480
Thermal Expansion, µm/m-K 21
11

Otherwise Unclassified Properties

Base Metal Price, % relative 23
18
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.8
3.6
Embodied Energy, MJ/kg 47
49
Embodied Water, L/kg 330
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 130
120
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 650
480
Stiffness to Weight: Axial, points 7.3
15
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 15 to 20
21
Strength to Weight: Bending, points 16 to 19
20
Thermal Shock Resistance, points 14 to 19
19

Alloy Composition

Aluminum (Al), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
28 to 30
Copper (Cu), % 57 to 60
0 to 0.15
Iron (Fe), % 0.8 to 2.0
64.9 to 68.5
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 0.050 to 0.5
0 to 0.3
Molybdenum (Mo), % 0
3.5 to 4.2
Nickel (Ni), % 0
0 to 0.15
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.2
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0.5 to 1.5
0
Zinc (Zn), % 35.1 to 41.7
0
Residuals, % 0 to 0.5
0