MakeItFrom.com
Menu (ESC)

C67600 Bronze vs. AISI 204 Stainless Steel

C67600 bronze belongs to the copper alloys classification, while AISI 204 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C67600 bronze and the bottom bar is AISI 204 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 13 to 33
23 to 39
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
77
Shear Strength, MPa 270 to 350
500 to 700
Tensile Strength: Ultimate (UTS), MPa 430 to 570
730 to 1100
Tensile Strength: Yield (Proof), MPa 170 to 380
380 to 1080

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 120
850
Melting Completion (Liquidus), °C 890
1410
Melting Onset (Solidus), °C 870
1370
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 110
15
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 27
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 23
10
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.4
Embodied Energy, MJ/kg 47
35
Embodied Water, L/kg 330
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63 to 130
240 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 680
360 to 2940
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 15 to 20
27 to 40
Strength to Weight: Bending, points 16 to 19
24 to 31
Thermal Diffusivity, mm2/s 35
4.1
Thermal Shock Resistance, points 14 to 19
16 to 24

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 57 to 60
0
Iron (Fe), % 0.4 to 1.3
69.6 to 76.4
Lead (Pb), % 0.5 to 1.0
0
Manganese (Mn), % 0.050 to 0.5
7.0 to 9.0
Nickel (Ni), % 0
1.5 to 3.0
Nitrogen (N), % 0
0.15 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.5 to 1.5
0
Zinc (Zn), % 35.2 to 41.6
0
Residuals, % 0 to 0.5
0