MakeItFrom.com
Menu (ESC)

C67600 Bronze vs. AWS BNi-9

C67600 bronze belongs to the copper alloys classification, while AWS BNi-9 belongs to the nickel alloys. There are 19 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is C67600 bronze and the bottom bar is AWS BNi-9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Poisson's Ratio 0.31
0.3
Shear Modulus, GPa 40
72
Tensile Strength: Ultimate (UTS), MPa 430 to 570
580

Thermal Properties

Latent Heat of Fusion, J/g 170
300
Melting Completion (Liquidus), °C 890
1060
Melting Onset (Solidus), °C 870
1060
Specific Heat Capacity, J/kg-K 380
480
Thermal Expansion, µm/m-K 21
12

Otherwise Unclassified Properties

Base Metal Price, % relative 23
60
Density, g/cm3 8.0
8.4
Embodied Carbon, kg CO2/kg material 2.8
9.3
Embodied Energy, MJ/kg 47
130
Embodied Water, L/kg 330
260

Common Calculations

Stiffness to Weight: Axial, points 7.2
12
Stiffness to Weight: Bending, points 20
23
Strength to Weight: Axial, points 15 to 20
19
Strength to Weight: Bending, points 16 to 19
18
Thermal Shock Resistance, points 14 to 19
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.050
Boron (B), % 0
3.3 to 4.0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
13.5 to 16.5
Cobalt (Co), % 0
0 to 0.1
Copper (Cu), % 57 to 60
0
Iron (Fe), % 0.4 to 1.3
0 to 1.5
Lead (Pb), % 0.5 to 1.0
0
Manganese (Mn), % 0.050 to 0.5
0
Nickel (Ni), % 0
77.1 to 83.3
Phosphorus (P), % 0
0 to 0.020
Selenium (Se), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0.5 to 1.5
0
Titanium (Ti), % 0
0 to 0.050
Zinc (Zn), % 35.2 to 41.6
0
Zirconium (Zr), % 0
0 to 0.050
Residuals, % 0
0 to 0.5