MakeItFrom.com
Menu (ESC)

C67600 Bronze vs. EN 1.4405 Stainless Steel

C67600 bronze belongs to the copper alloys classification, while EN 1.4405 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C67600 bronze and the bottom bar is EN 1.4405 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 13 to 33
17
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 430 to 570
860
Tensile Strength: Yield (Proof), MPa 170 to 380
610

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 120
870
Melting Completion (Liquidus), °C 890
1450
Melting Onset (Solidus), °C 870
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 110
17
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 27
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 23
13
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.8
Embodied Energy, MJ/kg 47
39
Embodied Water, L/kg 330
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63 to 130
130
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 680
950
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 15 to 20
31
Strength to Weight: Bending, points 16 to 19
26
Thermal Diffusivity, mm2/s 35
4.6
Thermal Shock Resistance, points 14 to 19
29

Alloy Composition

Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 57 to 60
0
Iron (Fe), % 0.4 to 1.3
73.6 to 80.3
Lead (Pb), % 0.5 to 1.0
0
Manganese (Mn), % 0.050 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
0.7 to 1.5
Nickel (Ni), % 0
4.0 to 6.0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 0.8
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0.5 to 1.5
0
Zinc (Zn), % 35.2 to 41.6
0
Residuals, % 0 to 0.5
0