MakeItFrom.com
Menu (ESC)

C67600 Bronze vs. EN 1.4655 Stainless Steel

C67600 bronze belongs to the copper alloys classification, while EN 1.4655 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C67600 bronze and the bottom bar is EN 1.4655 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 13 to 33
23 to 25
Poisson's Ratio 0.31
0.27
Shear Modulus, GPa 40
78
Shear Strength, MPa 270 to 350
460
Tensile Strength: Ultimate (UTS), MPa 430 to 570
720 to 730
Tensile Strength: Yield (Proof), MPa 170 to 380
450 to 480

Thermal Properties

Latent Heat of Fusion, J/g 170
290
Maximum Temperature: Mechanical, °C 120
1050
Melting Completion (Liquidus), °C 890
1420
Melting Onset (Solidus), °C 870
1370
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 110
15
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 27
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 23
15
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.9
Embodied Energy, MJ/kg 47
41
Embodied Water, L/kg 330
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63 to 130
150 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 680
510 to 580
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 15 to 20
26
Strength to Weight: Bending, points 16 to 19
23
Thermal Diffusivity, mm2/s 35
4.0
Thermal Shock Resistance, points 14 to 19
20

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
22 to 24
Copper (Cu), % 57 to 60
1.0 to 3.0
Iron (Fe), % 0.4 to 1.3
63.6 to 73.4
Lead (Pb), % 0.5 to 1.0
0
Manganese (Mn), % 0.050 to 0.5
0 to 2.0
Molybdenum (Mo), % 0
0.1 to 0.6
Nickel (Ni), % 0
3.5 to 5.5
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.5 to 1.5
0
Zinc (Zn), % 35.2 to 41.6
0
Residuals, % 0 to 0.5
0