MakeItFrom.com
Menu (ESC)

C67600 Bronze vs. EN 1.4872 Stainless Steel

C67600 bronze belongs to the copper alloys classification, while EN 1.4872 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C67600 bronze and the bottom bar is EN 1.4872 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 13 to 33
28
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
79
Shear Strength, MPa 270 to 350
620
Tensile Strength: Ultimate (UTS), MPa 430 to 570
950
Tensile Strength: Yield (Proof), MPa 170 to 380
560

Thermal Properties

Latent Heat of Fusion, J/g 170
300
Maximum Temperature: Mechanical, °C 120
1150
Melting Completion (Liquidus), °C 890
1390
Melting Onset (Solidus), °C 870
1340
Specific Heat Capacity, J/kg-K 380
490
Thermal Conductivity, W/m-K 110
15
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 27
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 23
17
Density, g/cm3 8.0
7.6
Embodied Carbon, kg CO2/kg material 2.8
3.3
Embodied Energy, MJ/kg 47
47
Embodied Water, L/kg 330
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63 to 130
230
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 680
780
Stiffness to Weight: Axial, points 7.2
15
Stiffness to Weight: Bending, points 20
26
Strength to Weight: Axial, points 15 to 20
35
Strength to Weight: Bending, points 16 to 19
28
Thermal Diffusivity, mm2/s 35
3.9
Thermal Shock Resistance, points 14 to 19
21

Alloy Composition

Carbon (C), % 0
0.2 to 0.3
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 57 to 60
0
Iron (Fe), % 0.4 to 1.3
54.2 to 61.6
Lead (Pb), % 0.5 to 1.0
0
Manganese (Mn), % 0.050 to 0.5
8.0 to 10
Nickel (Ni), % 0
6.0 to 8.0
Nitrogen (N), % 0
0.2 to 0.4
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.5 to 1.5
0
Zinc (Zn), % 35.2 to 41.6
0
Residuals, % 0 to 0.5
0