MakeItFrom.com
Menu (ESC)

C67600 Bronze vs. EN 1.7383 Steel

C67600 bronze belongs to the copper alloys classification, while EN 1.7383 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C67600 bronze and the bottom bar is EN 1.7383 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 13 to 33
20 to 23
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
74
Shear Strength, MPa 270 to 350
350 to 380
Tensile Strength: Ultimate (UTS), MPa 430 to 570
560 to 610
Tensile Strength: Yield (Proof), MPa 170 to 380
300 to 400

Thermal Properties

Latent Heat of Fusion, J/g 170
260
Maximum Temperature: Mechanical, °C 120
460
Melting Completion (Liquidus), °C 890
1470
Melting Onset (Solidus), °C 870
1430
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 110
39
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 27
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 23
3.9
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 2.8
1.8
Embodied Energy, MJ/kg 47
23
Embodied Water, L/kg 330
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63 to 130
110
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 680
240 to 420
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 15 to 20
20 to 22
Strength to Weight: Bending, points 16 to 19
19 to 20
Thermal Diffusivity, mm2/s 35
11
Thermal Shock Resistance, points 14 to 19
16 to 18

Alloy Composition

Aluminum (Al), % 0
0 to 0.040
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0
2.0 to 2.5
Copper (Cu), % 57 to 60
0 to 0.3
Iron (Fe), % 0.4 to 1.3
94.3 to 96.6
Lead (Pb), % 0.5 to 1.0
0
Manganese (Mn), % 0.050 to 0.5
0.4 to 0.8
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0
0 to 0.3
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0.5 to 1.5
0
Zinc (Zn), % 35.2 to 41.6
0
Residuals, % 0 to 0.5
0