MakeItFrom.com
Menu (ESC)

C67600 Bronze vs. EN 2.4663 Nickel

C67600 bronze belongs to the copper alloys classification, while EN 2.4663 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C67600 bronze and the bottom bar is EN 2.4663 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
210
Elongation at Break, % 13 to 33
40
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
81
Shear Strength, MPa 270 to 350
540
Tensile Strength: Ultimate (UTS), MPa 430 to 570
780
Tensile Strength: Yield (Proof), MPa 170 to 380
310

Thermal Properties

Latent Heat of Fusion, J/g 170
320
Maximum Temperature: Mechanical, °C 120
1010
Melting Completion (Liquidus), °C 890
1430
Melting Onset (Solidus), °C 870
1380
Specific Heat Capacity, J/kg-K 380
450
Thermal Conductivity, W/m-K 110
13
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 27
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 23
75
Density, g/cm3 8.0
8.6
Embodied Carbon, kg CO2/kg material 2.8
11
Embodied Energy, MJ/kg 47
140
Embodied Water, L/kg 330
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63 to 130
250
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 680
230
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
23
Strength to Weight: Axial, points 15 to 20
25
Strength to Weight: Bending, points 16 to 19
22
Thermal Diffusivity, mm2/s 35
3.5
Thermal Shock Resistance, points 14 to 19
22

Alloy Composition

Aluminum (Al), % 0
0.7 to 1.4
Boron (B), % 0
0 to 0.0060
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0
20 to 23
Cobalt (Co), % 0
11 to 14
Copper (Cu), % 57 to 60
0 to 0.5
Iron (Fe), % 0.4 to 1.3
0 to 2.0
Lead (Pb), % 0.5 to 1.0
0
Manganese (Mn), % 0.050 to 0.5
0 to 0.2
Molybdenum (Mo), % 0
8.5 to 10
Nickel (Ni), % 0
48 to 59.6
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0
0 to 0.2
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0.5 to 1.5
0
Titanium (Ti), % 0
0.2 to 0.6
Zinc (Zn), % 35.2 to 41.6
0
Residuals, % 0 to 0.5
0