MakeItFrom.com
Menu (ESC)

C67600 Bronze vs. EN 2.4878 Nickel

C67600 bronze belongs to the copper alloys classification, while EN 2.4878 nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C67600 bronze and the bottom bar is EN 2.4878 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 13 to 33
13 to 17
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
78
Shear Strength, MPa 270 to 350
750 to 760
Tensile Strength: Ultimate (UTS), MPa 430 to 570
1210 to 1250
Tensile Strength: Yield (Proof), MPa 170 to 380
740 to 780

Thermal Properties

Latent Heat of Fusion, J/g 170
330
Maximum Temperature: Mechanical, °C 120
1030
Melting Completion (Liquidus), °C 890
1370
Melting Onset (Solidus), °C 870
1320
Specific Heat Capacity, J/kg-K 380
460
Thermal Conductivity, W/m-K 110
11
Thermal Expansion, µm/m-K 21
12

Otherwise Unclassified Properties

Base Metal Price, % relative 23
80
Density, g/cm3 8.0
8.3
Embodied Carbon, kg CO2/kg material 2.8
10
Embodied Energy, MJ/kg 47
150
Embodied Water, L/kg 330
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63 to 130
150 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 680
1370 to 1540
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 15 to 20
41 to 42
Strength to Weight: Bending, points 16 to 19
31
Thermal Diffusivity, mm2/s 35
2.8
Thermal Shock Resistance, points 14 to 19
37 to 39

Alloy Composition

Aluminum (Al), % 0
1.2 to 1.6
Boron (B), % 0
0.010 to 0.015
Carbon (C), % 0
0.030 to 0.070
Chromium (Cr), % 0
23 to 25
Cobalt (Co), % 0
19 to 21
Copper (Cu), % 57 to 60
0 to 0.2
Iron (Fe), % 0.4 to 1.3
0 to 1.0
Lead (Pb), % 0.5 to 1.0
0
Manganese (Mn), % 0.050 to 0.5
0 to 0.5
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0
43.6 to 52.2
Niobium (Nb), % 0
0.7 to 1.2
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.0070
Tantalum (Ta), % 0
0 to 0.050
Tin (Sn), % 0.5 to 1.5
0
Titanium (Ti), % 0
2.8 to 3.2
Zinc (Zn), % 35.2 to 41.6
0
Zirconium (Zr), % 0
0.030 to 0.070
Residuals, % 0 to 0.5
0

Comparable Variants